
Netdev Conference 2022

P4 Compiler Backend for
P4TC
Sosutha Sethuramapandian – Cloud Software Development Engineer

2

• P4 is a high-level language for programming the data plane of network devices.
P4 Programs can be compiled and loaded to target pipeline.

• Any P4 program comprises an architecture file and user program.

• Architecture file defines the structure and identifies programmable pipeline
blocks (written in P4) – it serves as a contract between P4 program and the
target.

• User program includes this architecture file and define packet processing
pipeline for the business needs.

• Two standardized architectures provided by P4 community are

➢ PNA (Portable NIC Architecture)
➢ PSA (Portable Switch Architecture)

Overview of P4 and P4 Architecture

3

Compiler Workflow for P4TC Environment
P4

Program
Target / Arch
constraints

Open Source P4
Compiler Frontend

and Midend

Vendor Hardware
Backend

Hardware Target
Binary

TC Backend

Pipeline
template

Metadata
template

Action
template

Parser
template

Load P4TC Template using
Netlink

KERNEL

HARDWARE

P4TC Template

Introspection json

4

• Initial version of the P4TC compiler supports PNA architecture

• Uses open source P4 Compiler frontend and midend

• Target/Arch constraint file has target specific constraints which is additional
input to the compiler apart from p4 program

• Generates P4TC Template script and introspection json for the given P4
program written using PNA architecture

• Plan to support both PNA and PSA architecture
https://p4.org/p4-spec/docs/PNA-v0.5.0.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html

About P4TC Compiler

https://p4.org/p4-spec/docs/PNA-v0.5.0.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html

5

• Parser template: To represent the parse graph given in the P4 and for parsing
of the headers present in the packet

• Metadata template: To represent the metadata used in processing of the
packet information

• Action template: To represent the action that need to be carried out on the
parsed headers and metadata

• Pipeline template: To represent the overall pipeline control and the order of
execution of the actions based on the given P4

P4TC Template Sections

6

P4 Program

P4 Parser

P4 Metadata

P4 Control

P4 Table

keys

action

Pipeline

parser

metadata

tclass

keys

action

preaction postactionapply block

metact

metact

metact

Mapping of P4 Constructs to P4TC Template

7

• tclass: template object that has properties similar to p4 table

• key: template object that is mapped to table keys from p4

• preactions and postactions: Part of both tclass as well as pipeline template
objects. They are used to represent the sequence or conditions under which
actions (in case of tclass) or tables (in case of pipeline) need to be executed

• metact: metact action allows programmatic computation on header fields,
keys, intrinsic, and user-defined metadata

P4TC Template Objects

8

action template declaration
tc p4template create action/example/MainControlImpl/drop

action template definition
tc p4template update action example/MainControlImpl/drop \

metact \
cmd act kernel.drop

metadata creation
tc p4template create metadata/example/istd/direction mid 1 size 1

action template declaration
tc p4template create action/example/MainControlImpl/set_nhop \

param dstAddr type bit48 \
param port type bit9

action template definition
tc p4template update action example/MainControlImpl/set_nhop \

metact \
cmd set hdr/ethernet/srcAddr hdr/ethernet/dstAddr \
cmd set hdr/ethernet/dstAddr param/dstAddr \
cmd decr hdr/ipv4/ttl \
cmd act kernel.mirred metadata/example/istd/direction redirect

dev param/port

Example p4 and p4tc snippets

action drop() {
drop_packet();

}

action set_nhop(macAddr_t dstAddr, bit<9> port) {
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
send_to_port(port);

}

9

table simple_match {

key = {
hdr.ipv4.dstAddr: exact;
hdr.ipv4.srcAddr: exact;

}
actions = {

set_nhop;
drop;

}
size = 1024;
default_action = drop;

}

apply {
if (istd.direction == NET_TO_HOST) {

simple_match.apply();
}

}
}

table creation
tc p4template create tclass/example/MainControlImpl/simple_match \

tbcid 1 keysz 32 nummasks 8 tentries 1024 \

keys id 1 default action metact cmd set key \
hdrfield/example/MainParserImpl/hdr/ipv4/dstAddr \

keys id 2 action metact cmd set key \
hdrfield/example/MainParserImpl/hdr/ipv4/srcAddr \

postactions \

action metact cmd beq results/hit true control pipe / jump 1 \
cmd act results/action control ok \
cmd act kernel.drop

pipeline creation
tc p4template create pipeline/example pid 1 numtclasses 1 \

preactions \
action metact \
cmd beq metadata/example/istd/direction 0 control pipe / control ok \
cmd act tableapply simple_match control ok \

postactions \
action metact cmd act ok

1
0

• We aim to add tc backend as one of the open source backend along with
dpdk, ebpf to the open source p4c repo https://github.com/p4lang/p4c

• Upstreaming will be done once the tc backend is stabilized with good number
of testing and verification

• Plan is to upstream by Mar 31, 2023

Upstreaming the tc Backend to Open Source

https://github.com/p4lang/p4c

Thank You

